# Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices

#### Haris Skokos

Department of Mathematics and Applied Mathematics, University of Cape Town Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za URL: http://math\_research.uct.ac.za/~hskokos/

#### **Outline**

- Disordered 1D lattices:
  - √ The quartic disordered Klein-Gordon (DKG) model
  - ✓ The disordered discrete nonlinear Schrödinger equation (DDNLS)
  - **✓ Different dynamical behaviors**
- Chaotic behavior of the DKG and DDNLS models
  - **✓ Lyapunov exponents**
  - **✓ Deviation Vector Distributions**
- Summary

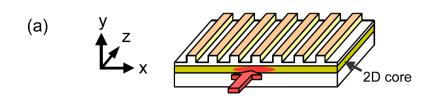
#### Interplay of disorder and nonlinearity

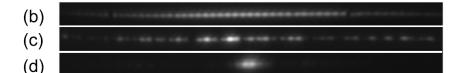
Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

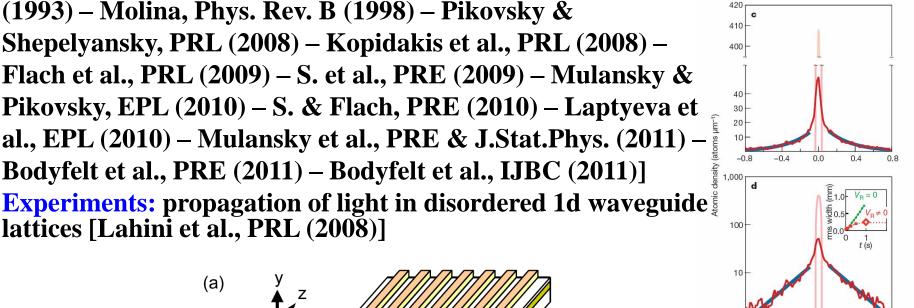
Waves in nonlinear disordered media – localization or delocalization?

lattices [Lahini et al., PRL (2008)]

Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, Phys. Rev. B (1998) – Pikovsky & Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et al., EPL (2010) - Mulansky et al., PRE & J.Stat.Phys. (2011) -Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)]







#### The disordered Klein - Gordon (DKG) model

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions  $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$ . Typically N=1000.

Parameters: W and the total energy E.  $\tilde{\varepsilon}_l$  chosen uniformly from  $\left| \frac{1}{2}, \frac{3}{2} \right|$ .

<u>Linear case</u> (neglecting the term  $u_l^4/4$ )

Ansatz:  $u_l = A_l \exp(i\omega t)$ . Normal modes (NMs)  $A_{v,l}$  - Eigenvalue problem:

$$\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$$
 with  $\lambda = W\omega^2 - W - 2$ ,  $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$ 

# The disordered discrete nonlinear Schrödinger (DDNLS) equation

We also consider the system:

$$H_{D} = \sum_{l=1}^{N} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1} \psi_{l}^{*} + \psi_{l+1}^{*} \psi_{l})$$

where  $\varepsilon_l$  chosen uniformly from  $\left|-\frac{W}{2},\frac{W}{2}\right|$  and  $\beta$  is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$  of the wave packet.

#### Distribution characterization

We consider normalized energy distributions  $z_v \equiv \frac{E_v}{\sum_m E_m}$ 

with 
$$E_v = \frac{p_v^2}{2} + \frac{\tilde{\varepsilon}_v}{2} u_v^2 + \frac{1}{4} u_v^4 + \frac{1}{4W} (u_{v+1} - u_v)^2$$
 for the DKG model,

and norm distributions  $z_v \equiv \frac{|\psi_v|^2}{\sum_l |\psi_l|^2}$  for the DDNLS system.

Second moment:  $m_2 = \sum_{v=1}^{N} (v - \overline{v})^2 z_v$  with  $\overline{v} = \sum_{v=1}^{N} v z_v$ 

Participation number:  $P = \frac{I}{\sum_{v=1}^{N} z_v^2}$ 

measures the number of stronger excited modes in  $z_v$ . Single site P=1. Equipartition of energy P=N.

# Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)]  $\Delta$ : width of the frequency spectrum, d: average spacing of interacting modes,  $\delta$ : nonlinear frequency shift.

#### Weak Chaos Regime: $\delta < d$ , $m_2 \propto t^{1/3}$

Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & Shepelyansky, PRL (2008)].

#### Intermediate Strong Chaos Regime: $d<\delta<\Delta$ , $m_2 \propto t^{1/2} \longrightarrow m_2 \propto t^{1/3}$

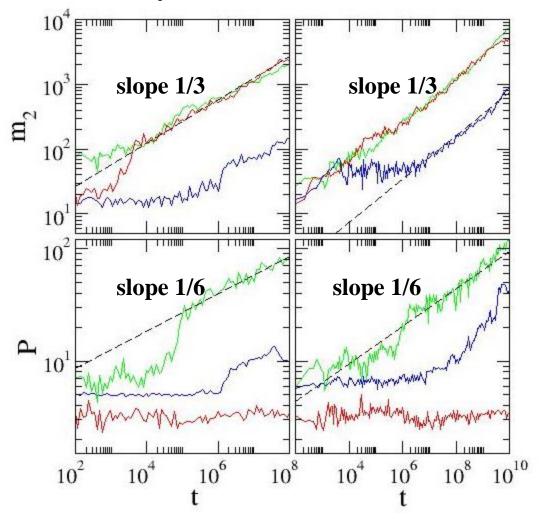
Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

#### Selftrapping Regime: $\delta > \Delta$

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].

### Single site excitations

**DDNLS** W=4,  $\beta$ = 0.1, 1, 4.5 **DKG** W = 4, E = 0.05, 0.4, 1.5



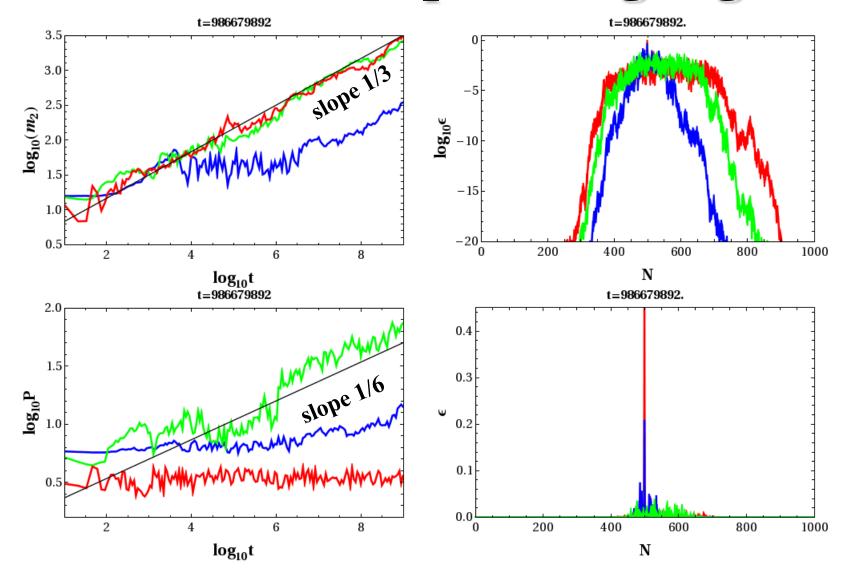
No strong chaos regime

In weak chaos regime we averaged the measured exponent  $\alpha$  (m<sub>2</sub>~t $^{\alpha}$ ) over 20 realizations:

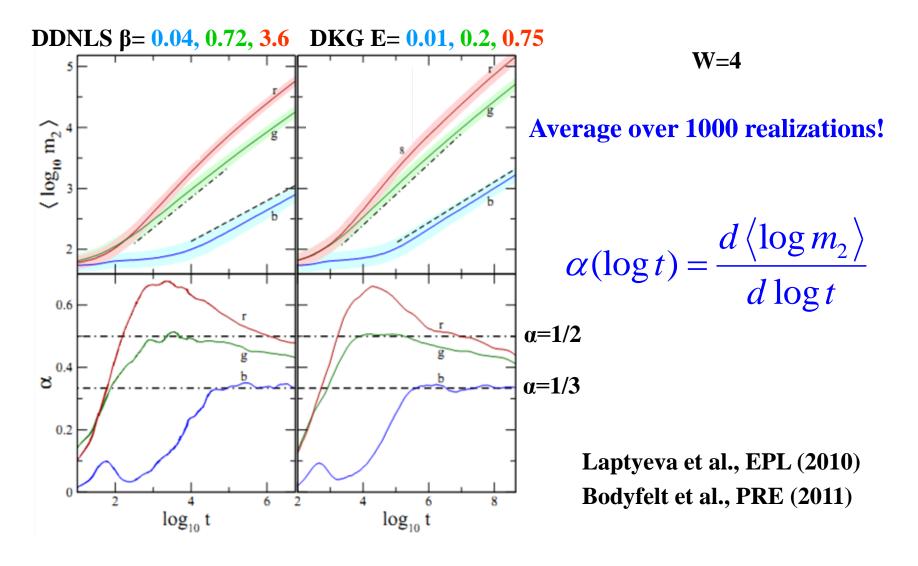
 $\alpha$ =0.33±0.05 (DKG)  $\alpha$ =0.33±0.02 (DDLNS)

Flach et al., PRL (2009) S. et al., PRE (2009)

# DKG: Different spreading regimes



# Crossover from strong to weak chaos (block excitations)



## Symplectic integration

We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the DKG model:

$$\boldsymbol{H}_{K} = \sum_{l=1}^{N} \left( \frac{\boldsymbol{p}_{l}^{2}}{2} + \frac{\tilde{\boldsymbol{\varepsilon}}_{l}}{2} \boldsymbol{u}_{l}^{2} + \frac{1}{4} \boldsymbol{u}_{l}^{4} + \frac{1}{2W} (\boldsymbol{u}_{l+1} - \boldsymbol{u}_{l})^{2} \right)$$

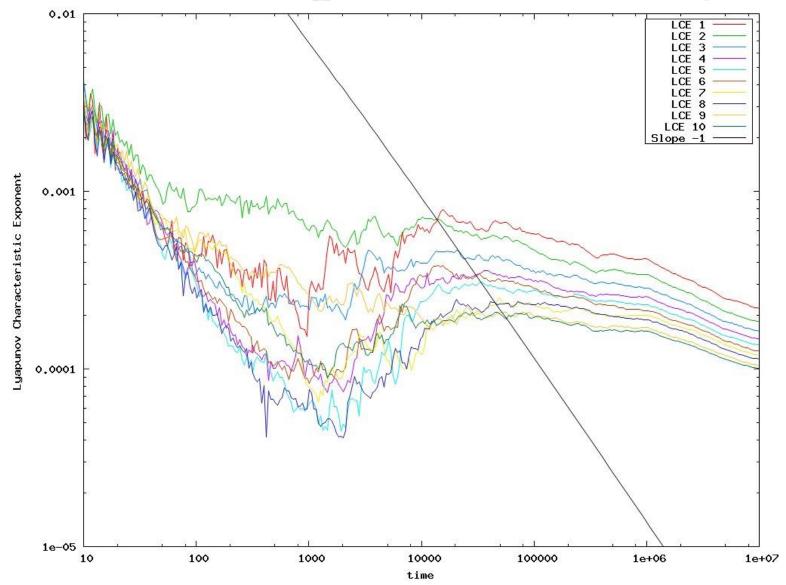
and the 3-part splitting integrator  $ABC^6_{[SS]}$  [S. et al., Phys. Let. A (2014) – Gerlach et al., EPJ ST (2016) ] to the DDNLS system:

$$H_{D} = \sum_{l} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1}\psi_{l}^{*} + \psi_{l+1}^{*}\psi_{l}), \quad \psi_{l} = \frac{1}{\sqrt{2}} (q_{l} + ip_{l})$$

$$H_{D} = \sum_{l} \left( \frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1} \right)$$

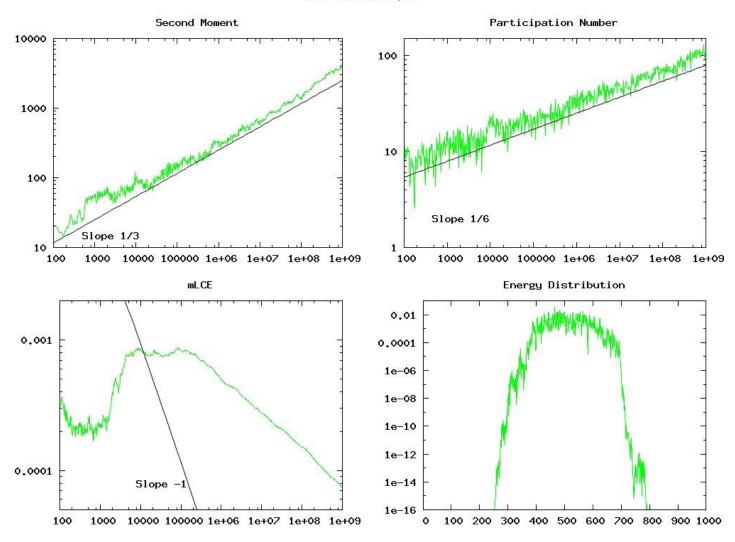
By using the so-called Tangent Map method we extend these symplectic integration schemes in order to integrate simultaneously the variational equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].

#### **DKG:** LEs for single site excitations (E=0.4)



# DKG: Weak Chaos (E=0.4)

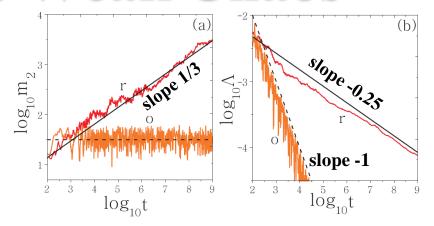
t = 1000000000.00

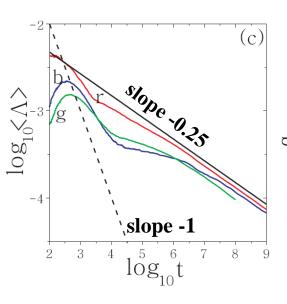


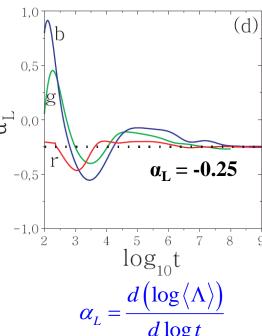
#### **DKG: Weak Chaos**

#### **Individual runs**

Linear case E=0.4, W=4







#### Average over 50 realizations

Single site excitation E=0.4, W=4

Block excitation (L=21 sites) E=0.21, W=4 Block excitation (L=37 sites) E=0.37, W=3

S. et al., PRL (2013)

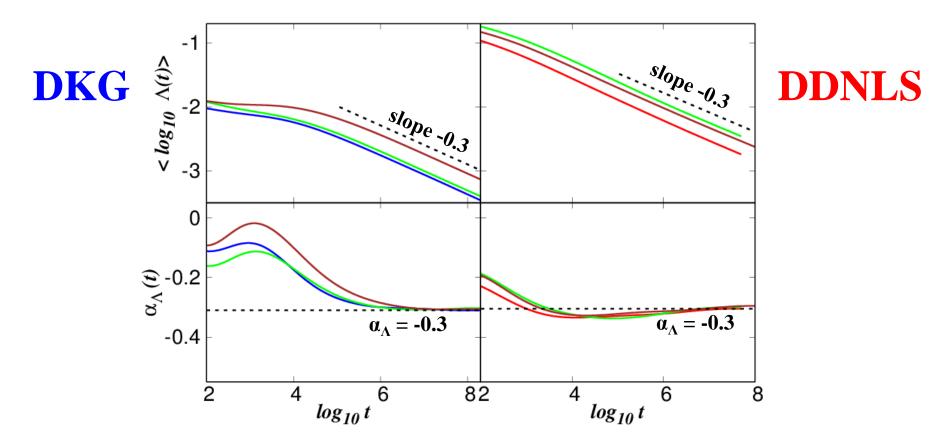
#### Weak Chaos: DKG and DDNLS



Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=37 sites) E=0.37, W=3 Single site excitation E=0.4, W=4 Block excitation (L=21 sites) E=0.21, W=4 Block excitation (L=13 sites) E=0.26, W=5 Block excitation (L=21 sites)  $\beta$ =0.04, W=4 Single site excitation  $\beta$ =1, W=4 Single site excitation  $\beta$ =0.6, W=3 Block excitation (L=21 sites)  $\beta$ =0.03, W=3

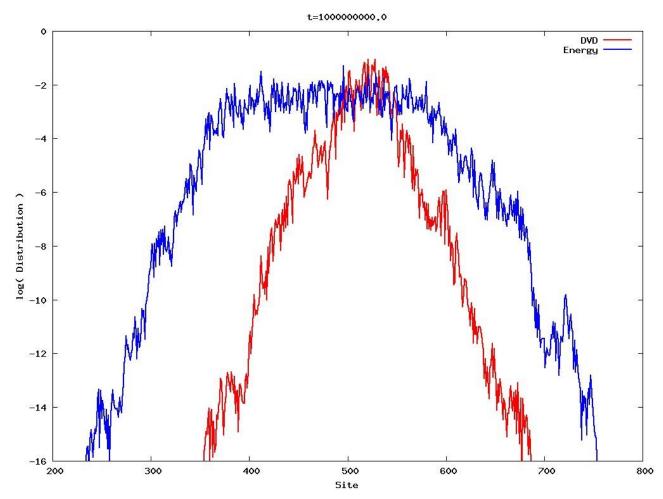
#### **Strong Chaos: DKG and DDNLS**



Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=83 sites) E=0.83, W=2 Block excitation (L=37 sites) E=0.37, W=3 Block excitation (L=83 sites) E=0.83, W=3 Block excitation (L=21 sites)  $\beta$ =0.62, W=3.5 Block excitation (L=21 sites)  $\beta$ =0.5, W=3 Block excitation (L=21 sites)  $\beta$ =0.72, W=3.5

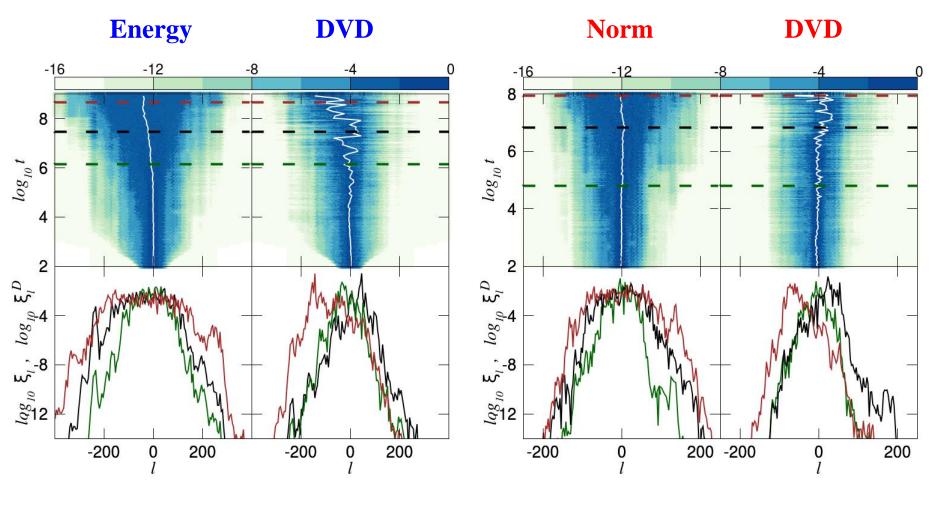
#### **Deviation Vector Distributions (DVDs)**



Deviation vector: 
$$v(t) = (\delta u_1(t), \delta u_2(t), ..., \delta u_N(t), \delta p_1(t), \delta p_2(t), ..., \delta p_N(t))$$

$$\mathbf{DVD:} \boldsymbol{\xi}_{l}^{D} = \frac{\delta u_{l}^{2} + \delta p_{l}^{2}}{\sum_{l} \left(\delta u_{l}^{2} + \delta p_{l}^{2}\right)}$$

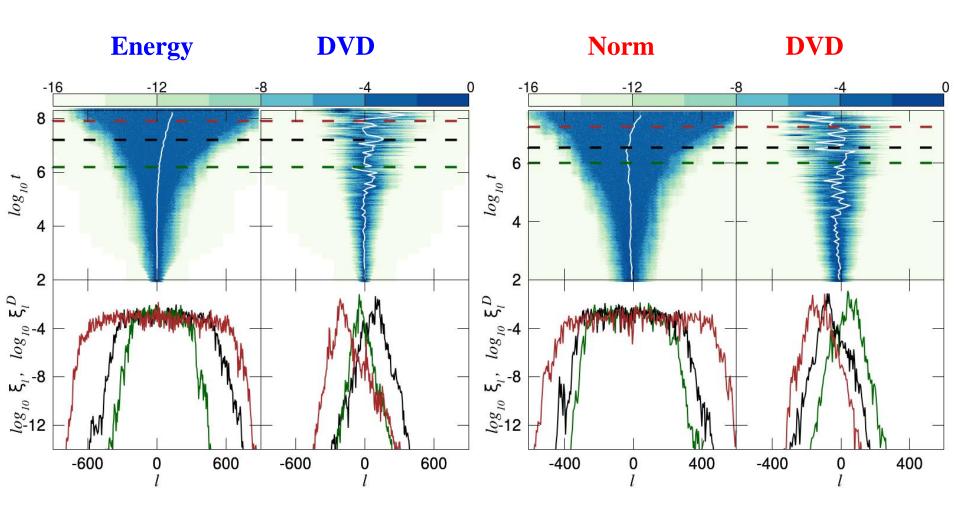
#### Weak Chaos: DKG and DDNLS



**DKG:** W=3, L=37, E=0.37

**DDNLS:** W=4, L=21,  $\beta$ =0.04

### **Strong Chaos: DKG and DDNLS**



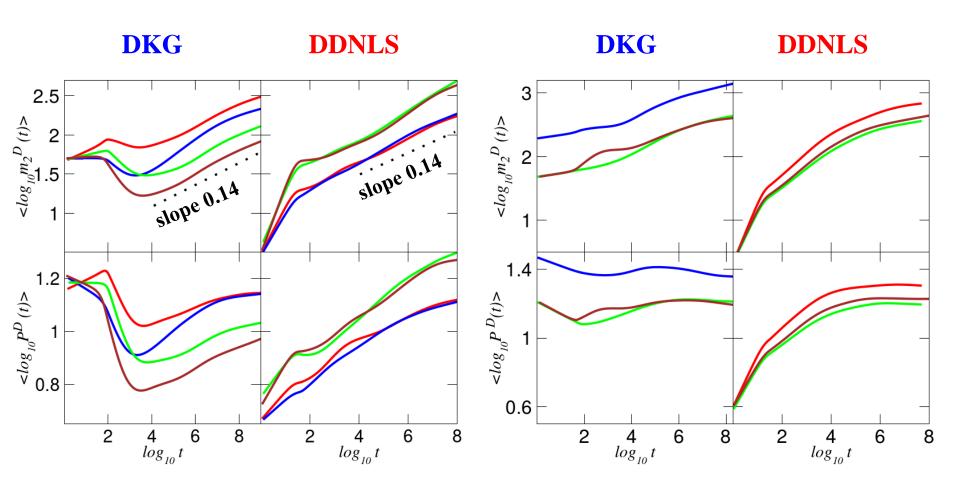
**DKG: W=3, L=83, E=8.3** 

**DDNLS:** W=3.5, L=21,  $\beta$ =0.72

#### **Characteristics of DVDs**

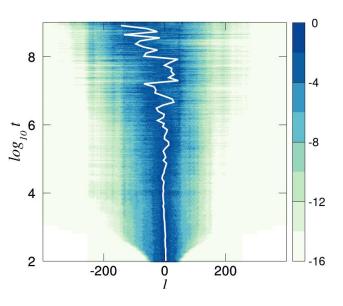
Weak chaos

**Strong chaos** 



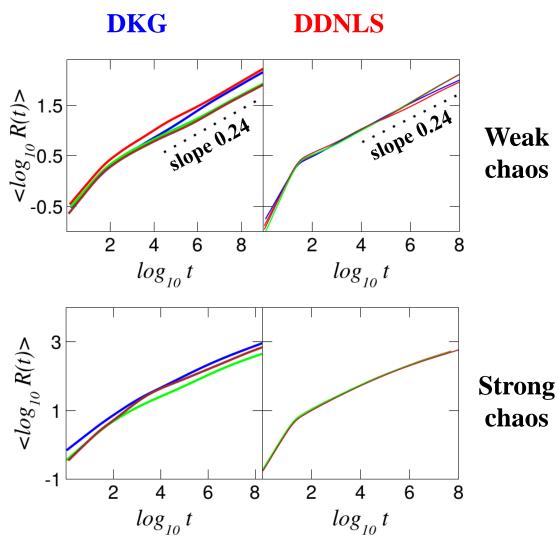
#### **Characteristics of DVDs**

KG weak chaos L=37, E=0.37, W=3



Range of the lattice visited by the DVD

$$R(t) = \max_{[0,t]} \left\{ \overline{l}_w(t) \right\} - \min_{[0,t]} \left\{ \overline{l}_w(t) \right\}$$
$$\overline{l}_w = \sum_{l=1}^{N} l \xi_l^D$$



# Summary

- Both the DKG and the DDNLS models show similar chaotic behaviors
- The mLCE and the DVDs show different behaviors for the weak and the strong chaos regimes.
- Lyapunov exponent computations show that:
  - ✓ Chaos not only exists, but also persists.
  - ✓ Slowing down of chaos does not cross over to regular dynamics.
  - ✓ Weak chaos: mLCE ~ t<sup>-0.25</sup>
  - ✓ Strong chaos: mLCE ~ t<sup>-0.3</sup>
- The behavior of DVDs can provide information about the chaoticity of a dynamical system.
  - ✓ Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.

B. Senyange, B. Many Manda & Ch. S.: 2018 'Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices', ArXiv:nlin.CD/1809.03173, Phys. Rev. E (in press)

# A ...shameless promotion

**Lecture Notes in Physics 915** 

Charalampos (Haris) Skokos Georg A. Gottwald Jacques Laskar *Editors* 

# Chaos Detection and Predictability



#### **Contents**

- 1. Parlitz: Estimating Lyapunov Exponents from Time Series
- 2. Lega, Guzzo, Froeschlé: Theory and Applications of the Fast Lyapunov Indicator (FLI) Method
- 3. Barrio: Theory and Applications of the Orthogonal Fast Lyapunov Indicator (OFLI and OFLI2) Methods
- 4. Cincotta, Giordano: Theory and Applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) Method
- **5. Ch.S., Manos:** The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection
- **6. Sándor, Maffione:** The Relative Lyapunov Indicators: Theory and Application to Dynamical Astronomy
- 7. Gottwald, Melbourne: The 0-1 Test for Chaos: A Review
- 8. Siegert, Kantz: Prediction of Complex Dynamics: Who Cares About Chaos?

2016, Lect. Notes Phys., 915, Springer